SECTION 033000 - CAST-IN-PLACE CONCRETE

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section specifies cast-in-place concrete, including formwork, reinforcement, concrete materials, mix design, placement procedures, and finishes.

B. Related Sections include the following:

1. Division 2 Section "Cement Concrete Pavement" for concrete pavement and walks.
2. Division 3 Section "Concrete Toppings" for metallic and nonmetallic concrete floor toppings.

1.3 DEFINITIONS

B. SUBMITTALS

C. Product Data: For each type of manufactured material and product indicated.

D. Design Mixes: For each concrete mix. Include alternate mix designs when characteristics of materials, project conditions, weather, test results, or other circumstances warrant adjustments.

1. Indicate amounts of mix water to be withheld for later addition at Project site.

E. Steel Reinforcement Shop Drawings: Details of fabrication, bending, and placement, prepared according to ACI 315, "Details and Detailing of Concrete Reinforcement.” Include material, grade, bar schedules, stirrup spacing, bent bar diagrams, arrangement, and supports of concrete reinforcement. Include special reinforcement required for openings through concrete structures.

F. Formwork Shop Drawings: Prepared by or under the supervision of a qualified professional engineer detailing fabrication, assembly, and support of formwork. Design and engineering of formwork are Contractor’s responsibility.
1. Shoring and Reshoring: Indicate proposed schedule and sequence of stripping formwork, shoring removal, and installing and removing reshoring.

G. Welding Certificates: Copies of certificates for welding procedures and personnel.

H. Material Test Reports: From a qualified testing agency indicating and interpreting test results for compliance of the following with requirements indicated, based on comprehensive testing of current materials:

I. Material Certificates: Signed by manufacturers certifying that each of the following items complies with requirements:
 1. Cementitious materials and aggregates.
 2. Form materials and form-release agents.
 3. Steel reinforcement and reinforcement accessories.
 4. Fiber reinforcement.
 5. Admixtures.
 7. Floor and slab treatments.
 10. Vapor retarders.
 11. Epoxy joint filler.

1.4 QUALITY ASSURANCE

A. Installer Qualifications: An experienced installer who has completed concrete work similar in material, design, and extent to that indicated for this Project and whose work has resulted in construction with a record of successful in-service performance.

B. Professional Engineer Qualifications: A professional engineer who is legally qualified to practice in jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for formwork and shoring and re-shoring installations that are similar to those indicated for this Project in material, design, and extent.

C. Manufacturer Qualifications: A firm experienced in manufacturing ready-mixed concrete products complying with ASTM C 94 requirements for production facilities and equipment.

 1. Manufacturer must be certified according to the National Ready Mixed Concrete Association’s Certification of Ready Mixed Concrete Production Facilities.

D. Testing Agency Qualifications: An independent testing agency, acceptable to authorities having jurisdiction, qualified according to ASTM C 1077 and ASTM E 329 to conduct the testing indicated, as documented according to ASTM E 548.
1. Personnel conducting field tests shall be qualified as ACI Concrete Field Testing Technician, Grade 1, according to ACI CP-1 or an equivalent certification program.

E. Source Limitations: Obtain each type or class of cementitious material of the same brand from the same manufacturer's plant, each aggregate from one source, and each admixture from the same manufacturer.

F. Welding: Qualify procedures and personnel according to AWS D1.4, "Structural Welding Code--Reinforcing Steel."

G. ACI Publications: Comply with the following, unless more stringent provisions are indicated:
 1. ACI 301, "Specification for Structural Concrete."
 2. ACI 117, "Specifications for Tolerances for Concrete Construction and Materials."

H. Preinstallation Conference: Conduct conference at Project site to comply with requirements in Division 1 Section "Project Meetings."
 1. Before submitting design mixes, review concrete mix design and examine procedures for ensuring quality of concrete materials. Require representatives of each entity directly concerned with cast-in-place concrete to attend, including the following:
 a. Contractor's superintendent.
 b. Independent testing agency responsible for concrete design mixes.
 c. Ready-mix concrete producer.
 d. Concrete subcontractor.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Deliver, store, and handle steel reinforcement to prevent bending and damage.

PART 2 - PRODUCTS

2.1 FORM-FACING MATERIALS

A. Smooth-Formed Finished Concrete: Form-facing panels that will provide continuous, true, and smooth concrete surfaces. Furnish in largest practicable sizes to minimize number of joints.
 1. Plywood, metal, or other approved panel materials.
 2. Exterior-grade plywood panels, suitable for concrete forms, complying with DOC PS 1, and as follows:
 a. High-density overlay, Class 1, or better.
b. Medium-density overlay, Class 1, or better, mill-release agent treated and edge sealed.
c. Structural 1, B-B, or better, mill oiled and edge sealed.
d. B-B (Concrete Form), Class 1, or better, mill oiled and edge sealed.

B. Rough-Formed Finished Concrete: Plywood, lumber, metal, or another approved material. Provide lumber dressed on at least two edges and one side for tight fit.

C. Pan-Type Forms: Glass-fiber-reinforced plastic or formed steel, stiffened to resist plastic concrete loads without detrimental deformation.

D. Void Forms: Biodegradable paper surface, treated for moisture resistance, structurally sufficient to support weight of plastic concrete and other superimposed loads.

F. Form-Release Agent: Commercially formulated form-release agent that will not bond with, stain, or adversely affect concrete surfaces and will not impair subsequent treatments of concrete surfaces.

G. Form Ties: Factory-fabricated, removable or snap-off metal or glass-fiber-reinforced plastic form ties designed to resist lateral pressure of fresh concrete on forms and to prevent spalling of concrete on removal.
 1. Furnish units that will leave no corroddible metal closer than 1 inch to the plane of the exposed concrete surface.
 2. Furnish ties that, when removed, will leave holes not larger than 1 inch in diameter in concrete surface.
 3. Furnish ties with integral water-barrier plates to walls indicated to receive dampproofing or waterproofing.

2.2 STEEL REINFORCEMENT

A. Reinforcing Bars: ASTM A 615/A 615M, Grade 60, deformed.

B. Steel Bar Mats: ASTM A 184/A 184M, assembled with clips.
 1. Steel Reinforcement: ASTM A 615/A 615M, Grade 60, deformed bars.
 2. Steel Reinforcement: ASTM A 706/A 706M, deformed bars.

C. Plain-Steel Wire: ASTM A 82, as drawn.

D. Plain-Steel Wire: ASTM A 82, galvanized.

E. Deformed-Steel Wire: ASTM A 496.

F. Plain-Steel Welded Wire Fabric: ASTM A 185, fabricated from as-drawn steel wire into flat sheets.

2.3 REINFORCEMENT ACCESSORIES

A. Bar Supports: Bolsters, chairs, spacers, and other devices for spacing, supporting, and fastening reinforcing bars and welded wire fabric in place. Manufacture bar supports according to CRSI's "Manual of Standard Practice" from steel wire, plastic, or precast concrete or fiber-reinforced concrete of greater compressive strength than concrete, and as follows:

1. For concrete surfaces exposed to view where legs of wire bar supports contact forms, use CRSI Class 1 plastic-protected or CRSI Class 2 stainless-steel bar supports.

B. Joint Dowel Bars: Plain-steel bars, ASTM A 615/A 615M, Grade 60. Cut bars true to length with ends square and free of burrs.

2.4 CONCRETE MATERIALS

A. Portland Cement: ASTM C 150, Type I/II.

B. Normal-Weight Aggregate: ASTM C 33, uniformly graded, and as follows:

1. Class: Severe weathering region, but not less than 3S.

C. Water: Potable and complying with ASTM C 94.

2.5 ADMIXTURES

A. General: Admixtures certified by manufacturer to contain not more than 0.1 percent water-soluble chloride ions by mass of cementitious material and to be compatible with other admixtures and cementitious materials. Do not use admixtures containing calcium chloride.

C. Water-Reducing Admixture: ASTM C 494, Type A.

D. High-Range, Water-Reducing Admixture: ASTM C 494, Type F.

E. Water-Reducing and Accelerating Admixture: ASTM C 494, Type E.

F. Water-Reducing and Retarding Admixture: ASTM C 494, Type D.

G. Corrosion-Inhibiting Admixture: Commercially formulated, anodic inhibitor or mixed cathodic and anodic inhibitor; capable of forming a protective barrier and minimizing chloride reactions with steel reinforcement in concrete.

1. Products: Subject to compliance with requirements, provide one of the following:
2.6 VAPOR RETARDERS

A. Vapor Retarder: ASTM E 1745, Class C, of one of the following materials; or polyethylene sheet, ASTM D 4397, not less than 10 mils thick:

1. Nonwoven, polyester-reinforced, polyethylene coated sheet; 10 mils thick.
2. Three-ply, nylon- or polyester-cord-reinforced, laminated, high-density polyethylene sheet; 7.8 mils thick.

B. Vapor Retarder: ASTM E 1745, Class A, three-ply, nylon- or polyester-cord-reinforced, high-density polyethylene sheet; laminated to a nonwoven geotextile fabric, 30 mils thick.

1. Available Product: Subject to compliance with requirements, a product that may be incorporated into the Work includes, but is not limited to, "Griffolyn T-65G" by Reef Industries Inc.

C. Fine-Graded Granular Material: Clean mixture of crushed stone, crushed gravel, and manufactured or natural sand; ASTM D 448, Size 10, with 100 percent passing a No. 4 sieve and 10 to 30 percent passing a No. 100 sieve; meeting deleterious substance limits of ASTM C 33 for fine aggregates.

D. Granular Fill: Clean mixture of crushed stone or crushed or uncrushed gravel; ASTM D 448, Size 57, with 100 percent passing a 1-1/2-inch sieve and 0 to 5 percent passing a No. 8 sieve.

2.7 FLOOR AND SLAB TREATMENTS

A. Unpigmented Mineral Dry-Shake Floor Hardener: Factory-packaged dry combination of portland cement, graded quartz aggregate, and plasticizing admixture.

B. Penetrating Liquid Floor Treatment: Chemically reactive, waterborne solution of inorganic silicate or silicone materials and proprietary components; odorless; colorless; that penetrates, hardens, and densifies concrete surfaces.

C. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:

1. Unpigmented Mineral Dry-Shake Floor Hardener:
 a. Non-Metallic Floor Hardener; Burke Group, LLC (The).
 b. Concolor; ChemMasters.
 c. Conshake 500; Conspec Marketing & Manufacturing Co., Inc.
d. Quartz Tuff; Dayton Superior Corporation.
e. Surflex; Euclid Chemical Co.
f. Tycron; Kaufman Products, Inc.
g. Colorhard; Lambert Corporation.
h. Quartzplate; L&M Construction Chemicals, Inc.
i. Maximent; Master Builders, Inc.
j. Floor Quartz; Metalcrete Industries.
k. Hard Top; Richmond Screw Anchor Co.
l. Lithochrome Color Hardener; L. M. Scofield Co.
m. Harcol; Sonneborn, Div. of ChemRex, Inc.
n. Durag Premium; Sternson Group.
o. Hard Top; Symons Corporation.

2. Penetrating Liquid Floor Treatment:
 a. Titan Hard; Burke Group, LLC (The).
 b. Chemisil Plus; ChemMasters.
 c. Intraseal; Conspec Marketing & Manufacturing Co., Inc.
 d. Ashford Formula; Curecrete Chemical Co., Inc.
 e. Day-Chem Sure Hard; Dayton Superior Corporation.
 f. Euco Diamond Hard; Euclid Chemical Co.
 g. Seal Hard; L&M Construction Chemicals, Inc.
 h. Vexcon Starseal PS; Vexcon Chemicals, Inc.

2.8 CURING MATERIALS

A. Evaporation Retarder: Waterborne, monomolecular film forming, manufactured for application to fresh concrete.

B. Clear, Solvent-Borne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B.

C. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B.

D. Clear, Waterborne, Membrane-Forming Curing Compound: ASTM C 309, Type 1, Class B, 18 to 22 percent solids.

E. Clear, Solvent-Borne, Membrane-Forming Curing and Sealing Compound: ASTM C 1315, Type 1, Class A.

F. Clear, Waterborne, Membrane-Forming Curing and Sealing Compound: ASTM C 1315, Type 1, Class A.

G. Available Products: Subject to compliance with requirements, products that may be incorporated into the Work include, but are not limited to, the following:

1. Evaporation Retarder:
 a. Cimfilm; Axim Concrete Technologies.
b. Finishing Aid Concentrate; Burke Group, LLC (The).
c. Spray-Film; ChemMasters.
d. Aquafilm; Conspec Marketing & Manufacturing Co., Inc.
e. Sure Film; Dayton Superior Corporation.
f. Eucobar; Euclid Chemical Co.
g. Vapor Aid; Kaufman Products, Inc.
h. Lambco Skin; Lambert Corporation.
i. E-Con; L&M Construction Chemicals, Inc.
j. Confilm; Master Builders, Inc.
k. Waterhold; Metalcrete Industries.
l. Rich Film; Richmond Screw Anchor Co.
m. SikaFilm; Sika Corporation.
n. Finishing Aid; Symons Corporation.
o. Certi-Vex EnvioAssist; Vexcon Chemicals, Inc.

2. Clear, Solvent-Borne, Membrane-Forming Curing Compound:
 a. AH Clear Cure; Anti-Hydro International, Inc.
 b. Spartan-Cote; Burke Group, LLC (The).
 c. Spray-Cure & Seal 15; ChemMasters.
 d. Conspec #1-15 percent solids; Conspec Marketing & Manufacturing Co., Inc.
 e. Day-Chem Cure and Seal; Dayton Superior Corporation.
 f. Diamond Clear; Euclid Chemical Co.
 g. Nitocure S; Fosroc.
 h. Cure & Seal 309; Kaufman Products Inc.
 i. Lambco 120; Lambert Corporation.
 j. L&M Dress & Seal 18; L&M Construction Chemicals, Inc.
 k. CS-309; W. R. Meadows, Inc.
 l. Seal N Kure; Metalcrete Industries.
 m. Rich Seal 14 percent UV; Richmond Screw Anchor Co.
 n. Kure-N-Seal; Sonneborn, Div. of ChemRex, Inc.
 o. Flortec 14; Sternson Group.
 p. Cure & Seal 14 percent; Symons Corporation.
 q. Clear Seal 150; Tamms Industries Co., Div. of LaPorte Construction Chemicals of North America, Inc.
 r. Acrylic Cure; Unitex.
 s. Certi-Vex AC 309; Vexcon Chemicals, Inc.

3. Clear, Waterborne, Membrane-Forming Curing Compound:
 a. AH Clear Cure WB; Anti-Hydro International, Inc.
 b. Klear Kote WB II Regular; Burke Chemicals.
 c. Safe-Cure & Seal 20; ChemMasters.
 d. High Seal; Conspec Marketing & Manufacturing Co., Inc.
 e. Safe Cure and Seal; Dayton Superior Corporation.
 f. Aqua Cure VOX; Euclid Chemical Co.
 g. Cure & Seal 309 Emulsion; Kaufman Products Inc.
 h. Glazecote Sealer-20; Lambert Corporation.
 i. Dress & Seal WB; L&M Construction Chemicals, Inc.
 j. Vocomp-20; W. R. Meadows, Inc.
VIHFA MIXED USE BUILDING TOTAL ENGINEERING LTD.
St. Thomas

k. Metcure; Metalcrete Industries.
l. Cure & Seal 150E; Nox-Crete Products Group, Kinsman Corporation.
m. Rich Seal 14 percent E; Richmond Screw Anchor Co.
n. Kure-N- Seal WB; Sonneborn, Div. of ChemRex, Inc.
o. Florseal W.B.; Sternson Group.
p. Cure & Seal 14 percent E; Symons Corporation.
q. Seal Cure WB 150; Tamms Industries Co., Div. of LaPorte Construction
 Chemicals of North America, Inc.
r. Hydro Seal; Unitex.
s. Star seal 309; Vexcon Chemicals, Inc.

4. Clear, Waterborne, Membrane-Forming Curing Compound, 18 to 22 Percent
 Solids:
 a. Klear Kote WB II 20 percent; Burke Chemicals.
b. Safe-Cure & Seal 20; ChemMasters.
c. Conspec 21; Conspec Marketing & Manufacturing Co., Inc.
d. Diamond Clear VOX; Euclid Chemical Co.
e. SureCure Emulsion; Kaufman Products Inc.
f. Glazecote Sealer-20; Lambert Corporation.
g. Dress & Seal WB; L&M Construction Chemicals, Inc.
h. Vocomp-20; W. R. Meadows, Inc.
i. Metcure 0800; Metalcrete Industries.
j. Cure & Seal 200E; Nox-Crete Products Group, Kinsman Corporation.
k. Rich Seal 18 percent E; Richmond Screw Anchor Co.
l. Kure-N-Seal W; Sonneborn, Div. of ChemRex, Inc.
m. Florseal W.B.; Sternson Group.
n. Cure & Seal 18 percent E; Symons Corporation.
o. Seal Cure WB STD; Tamms Industries Co., Div. of LaPorte Construction
 Chemicals of North America, Inc.
p. Hydro Seal 800; Unitex.
q. Star seal 0800; Vexcon Chemicals, Inc.

5. Clear, Solvent-Borne, Membrane-Forming Curing and Sealing Compound:
 a. Spray-Cure & Seal Plus; ChemMasters.
b. UV Super Seal; Lambert Corporation.
c. Lumiseal Plus; L&M Construction Chemicals, Inc.
d. CS-309/30; W. R. Meadows, Inc.
e. Seal N Kure 30; Metalcrete Industries.
f. Rich Seal 31 percent UV; Richmond Screw Anchor Co.
g. Cure & Seal 31 percent UV; Symons Corporation.
h. Certi-Vex AC 1315; Vexcon Chemicals, Inc.

6. Clear, Waterborne, Membrane-Forming Curing and Sealing Compound:
 a. Klear-Kote Cure-Sealer-Hardener, 30 percent solids; Burke Group, LLC
 (The).
b. Polysel WB; ChemMasters.
c. UV Safe Seal; Lambert Corporation.
d. Lumiseal WB Plus; L&M Construction Chemicals, Inc.
2.9 RELATED MATERIALS

C. Joint-Filler Strips: ASTM D 1751, asphalt-saturated cellulosic fiber, or ASTM D 1752, cork or self-expanding cork.

D. Epoxy Joint Filler: Two-component, semirigid, 100 percent solids, epoxy resin with a Shore A hardness of 80 per ASTM D 2240.

E. Bonding Agent: ASTM C 1059, Type II, non-redispersible, acrylic emulsion or styrene butadiene.

F. Epoxy-Bonding Adhesive: ASTM C 881, two-component epoxy resin, capable of humid curing and bonding to damp surfaces, of class and grade to suit requirements, and as follows:

1. Type II, non-load bearing, for bonding freshly mixed concrete to hardened concrete.
2. Types I and II, non-load bearing, for bonding hardened or freshly mixed concrete to hardened concrete.
3. Types IV and V, load bearing, for bonding hardened or freshly mixed concrete to hardened concrete.

2.10 REPAIR MATERIALS

A. Repair Underlayment: Cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/8 inch and that can be feathered at edges to match adjacent floor elevations.

1. Cement Binder: ASTM C 150, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
2. Primer: Product of underlayment manufacturer recommended for substrate, conditions, and application.
3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand as recommended by underlayment manufacturer.
4. Compressive Strength: Not less than 4100 psi at 28 days when tested according to ASTM C 109/C 109M.

B. Repair Topping: Traffic-bearing, cement-based, polymer-modified, self-leveling product that can be applied in thicknesses from 1/4 inch.
1. Cement Binder: ASTM C 150, portland cement or hydraulic or blended hydraulic cement as defined in ASTM C 219.
2. Primer: Product of topping manufacturer recommended for substrate, conditions, and application.
3. Aggregate: Well-graded, washed gravel, 1/8 to 1/4 inch or coarse sand as recommended by topping manufacturer.
4. Compressive Strength: Not less than 5700 psi at 28 days when tested according to ASTM C 109/C 109M.

2.11 CONCRETE MIXES

A. Prepare design mixes for each type and strength of concrete determined by either laboratory trial mix or field test data bases, as follows:

1. Proportion normal-weight concrete according to ACI 211.1 and ACI 301.

B. Use a qualified independent testing agency for preparing and reporting proposed mix designs for the laboratory trial mix basis.

C. Footings and Foundation Walls: Proportion normal-weight concrete mix as follows:

3. Maximum Slump for Concrete Containing High-Range Water-Reducing Admixture: 8 inches after admixture is added to concrete with 2- to 4-inch slump.

D. Slab-on-Grade: Proportion normal-weight concrete mix as follows:

E. Suspended Slabs: Proportion normal-weight concrete mix as follows:

F. Building Frame Members: Proportion normal-weight concrete mix as follows:

3. Maximum Slump for Concrete Containing High-Range Water-Reducing Admixture: 8 inches after admixture is added to concrete with 2- to 3-inch slump.

G. Maximum Water-Cementitious Materials Ratio: 0.45 for all concrete.

H. Air Content: Add air-entraining admixture at manufacturer's prescribed rate to result in concrete at point of placement having an air content as follows within a tolerance of plus 1 or minus 1.5 percent, unless otherwise indicated:
1. Air Content: 5.5 percent for 3/4-inch nominal maximum aggregate size.

I. Do not air entrain concrete to trowel-finished interior floors and suspended slabs. Do not allow entrapped air content to exceed 3 percent.

J. Limit water-soluble, chloride-ion content in hardened concrete to 0.15 percent by weight of cement.

K. Admixtures: Use admixtures according to manufacturer's written instructions.

1. Use water-reducing admixture or high-range water-reducing admixture (superplasticizer) in concrete, as required, for placement and workability.
2. Use water-reducing and retarding admixture when required by high temperatures, low humidity, or other adverse placement conditions.
3. Use water-reducing admixture in pumped concrete, concrete for heavy-use industrial slabs and parking structure slabs, concrete required to be watertight, and concrete with a water-cementitious materials ratio below 0.50.
4. Use corrosion-inhibiting admixture in concrete mixes where indicated.

2.12 FABRICATING REINFORCEMENT

A. Fabricate steel reinforcement according to CRSI's "Manual of Standard Practice."

2.13 CONCRETE MIXING

A. Ready-Mixed Concrete: Measure, batch, mix, and deliver concrete according to ASTM C 94 and ASTM C 1116, and furnish batch ticket information.

1. When air temperature is between 85 and 90 deg F, reduce mixing and delivery time from 1-1/2 hours to 75 minutes; when air temperature is above 90 deg F, reduce mixing and delivery time to 60 minutes.

B. Project-Site Mixing: Measure, batch, and mix concrete materials and concrete according to ASTM C 94. Mix concrete materials in appropriate drum-type batch machine mixer.

1. For mixer capacity of 1 cu. yd. or smaller, continue mixing at least one and one-half minutes, but not more than five minutes after ingredients are in mixer, before any part of batch is released.
2. For mixer capacity larger than 1 cu. yd., increase mixing time by 15 seconds for each additional 1 cu. yd.
3. Provide batch ticket for each batch discharged and used in the Work, indicating Project identification name and number, date, mix type, mix time, quantity, and amount of water added. Record approximate location of final deposit in structure.

PART 3 - EXECUTION
3.1 FORMWORK

A. Design, erect, shore, brace, and maintain formwork, according to ACI 301, to support vertical, lateral, static, and dynamic loads, and construction loads that might be applied, until concrete structure can support such loads.

B. Construct formwork so concrete members and structures are of size, shape, alignment, elevation, and position indicated, within tolerance limits of ACI 117.

C. Limit concrete surface irregularities, designated by ACI 347R as abrupt or gradual, as follows:
 1. Class A, 1/8 inch.

D. Construct forms tight enough to prevent loss of concrete mortar.

E. Fabricate forms for easy removal without hammering or prying against concrete surfaces. Provide crush or wrecking plates where stripping may damage cast concrete surfaces. Provide top forms for inclined surfaces steeper than 1.5 horizontal to 1 vertical. Kerf wood inserts for forming keyways, reglets, recesses, and the like, for easy removal.
 1. Do not use rust-stained steel form-facing material.

F. Set edge forms, bulkheads, and intermediate screed strips for slabs to achieve required elevations and slopes in finished concrete surfaces. Provide and secure units to support screed strips; use strike-off templates or compacting-type screeds.

G. Provide temporary openings for cleanouts and inspection ports where interior area of formwork is inaccessible. Close openings with panels tightly fitted to forms and securely braced to prevent loss of concrete mortar. Locate temporary openings in forms at inconspicuous locations.

H. Do not chamfer corners or edges of concrete unless noted on drawing.

I. Form openings, chases, offsets, sinkages, keyways, reglets, blocking, screeds, and bulkheads required in the Work. Determine sizes and locations from trades providing such items.

J. Clean forms and adjacent surfaces to receive concrete. Remove chips, wood, sawdust, dirt, and other debris just before placing concrete.

K. Retighten forms and bracing before placing concrete, as required, to prevent mortar leaks and maintain proper alignment.

L. Coat contact surfaces of forms with form-release agent, according to manufacturer's written instructions, before placing reinforcement.

3.2 EMBEDDED ITEMS
A. Place and secure anchorage devices and other embedded items required for adjoining work that is attached to or supported by cast-in-place concrete. Use Setting Drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.

1. Install anchor bolts, accurately located, to elevations required.

3.3 REMOVING AND REUSING FORMS

A. General: Formwork, for sides of beams, walls, columns, and similar parts of the Work, that does not support weight of concrete may be removed after cumulatively curing at not less than 50 deg F for 24 hours after placing concrete provided concrete is hard enough to not be damaged by form-removal operations and provided curing and protection operations are maintained.

B. Leave formwork, for beam soffits, joists, slabs, and other structural elements, that supports weight of concrete in place until concrete has achieved the following:

1. 28-day design compressive strength.
2. At least 70 percent of 28-day design compressive strength.
3. Determine compressive strength of in-place concrete by testing representative field- or laboratory-cured test specimens according to ACI 301.
4. Remove forms only if shores have been arranged to permit removal of forms without loosening or disturbing shores.

C. Clean and repair surfaces of forms to be reused in the Work. Split, frayed, delaminated, or otherwise damaged form-facing material will not be acceptable for exposed surfaces. Apply new form-release agent.

D. When forms are reused, clean surfaces, remove fins and laitance, and tighten to close joints. Align and secure joints to avoid offsets. Do not use patched forms for exposed concrete surfaces unless approved by Architect.

3.4 SHORES AND RESHORES

A. Comply with ACI 318, ACI 301, and recommendations in ACI 347R for design, installation, and removal of shoring and reshoring.

B. In multistory construction, extend shoring or reshoring over a sufficient number of stories to distribute loads in such a manner that no floor or member will be excessively loaded or will induce tensile stress in concrete members without sufficient steel reinforcement.

C. Plan sequence of removal of shores and reshore to avoid damage to concrete. Locate and provide adequate reshoring to support construction without excessive stress or deflection.

3.5 VAPOR RETARDERS
A. Vapor Retarder: Place, protect, and repair vapor-retarder sheets according to ASTM E 1643 and manufacturer's written instructions.

B. Fine-Graded Granular Material: Cover vapor retarder with fine-graded granular material, moisten, and compact with mechanical equipment to elevation tolerances of plus 0 inch or minus 3/4 inch.

C. Granular Fill: Cover vapor retarder with granular fill, moisten, and compact with mechanical equipment to elevation tolerances of plus 0 inch or minus 3/4 inch.

1. Place and compact a 1/2-inch-thick layer of fine-graded granular material over granular fill.

3.6 STEEL REINFORCEMENT

A. General: Comply with CRSI's "Manual of Standard Practice" for placing reinforcement.

1. Do not cut or puncture vapor retarder. Repair damage and reseal vapor retarder before placing concrete.

B. Clean reinforcement of loose rust and mill scale, earth, and other foreign materials.

C. Accurately position, support, and secure reinforcement against displacement. Locate and support reinforcement with bar supports to maintain minimum concrete cover. Do not tack weld crossing reinforcing bars.

1. Shop- or field-weld reinforcement according to AWS D1.4, where indicated.

D. Set wire ties with ends directed into concrete, not toward exposed concrete surfaces.

E. Install welded wire fabric in longest practicable lengths on bar supports spaced to minimize sagging. Lap edges and ends of adjoining sheets at least one mesh spacing. Offset laps of adjoining sheet widths to prevent continuous laps in either direction. Lace overlaps with wire.

3.7 JOINTS

A. General: Construct joints true to line with faces perpendicular to surface plane of concrete.

B. Construction Joints: Install so strength and appearance of concrete are not impaired, at locations indicated or as approved by Architect.

1. Place joints perpendicular to main reinforcement. Continue reinforcement across construction joints, unless otherwise indicated. Do not continue reinforcement through sides of strip placements of floors and slabs.

2. Form from preformed galvanized steel, plastic keyway-section forms, or bulkhead forms with keys, unless otherwise indicated. Embed keys at least 1-1/2 inches into concrete.
3. Locate joints for beams, slabs, joists, and girders in the middle third of spans. Offset joints in girders a minimum distance of twice the beam width from a beam-girder intersection.

4. Locate horizontal joints in walls and columns at underside of floors, slabs, beams, and girders and at the top of footings or floor slabs.

5. Space vertical joints in walls as indicated. Locate joints beside piers integral with walls, near corners, and in concealed locations where possible.

6. Use a bonding agent at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.

7. Use epoxy-bonding adhesive at locations where fresh concrete is placed against hardened or partially hardened concrete surfaces.

C. Contraction Joints in Slabs-on-Grade: Form weakened-plane contraction joints, sectioning concrete into areas as indicated. Construct contraction joints for a depth equal to at least one-fourth of concrete thickness, as follows:

1. Grooved Joints: Form contraction joints after initial floating by grooving and finishing each edge of joint to a radius of 1/8 inch. Repeat grooving of contraction joints after applying surface finishes. Eliminate groover tool marks on concrete surfaces.

2. Sawed Joints: Form contraction joints with power saws equipped with shatterproof abrasive or diamond-rimmed blades. Cut 1/8-inch-wide joints into concrete when cutting action will not tear, abrade, or otherwise damage surface and before concrete develops random contraction cracks but no later than 4 hours after concrete placement.

D. Isolation Joints in Slabs-on-Grade: After removing formwork, install joint-filler strips at slab junctions with vertical surfaces, such as column pedestals, foundation walls, grade beams, and other locations, as indicated.

1. Extend joint-filler strips full width and depth of joint, terminating flush with finished concrete surface, unless otherwise indicated.

2. Terminate full-width joint-filler strips not less than 1/2 inch or more than 1 inch below finished concrete surface where joint sealants, specified in Division 7 Section “Joint Sealants,” are indicated.

3. Install joint-filler strips in lengths as long as practicable. Where more than one length is required, lace or clip sections together.

E. Dowel Joints: Install dowel sleeves and dowels or dowel bar and support assemblies at joints where indicated.

1. Use dowel sleeves or lubricate or asphalt-coat one-half of dowel length to prevent concrete bonding to one side of joint.

3.8 CONCRETE PLACEMENT

A. Before placing concrete, verify that installation of formwork, reinforcement, and embedded items is complete and that required inspections have been performed.
B. Do not add water to concrete during delivery, at Project site, or during placement, unless approved by Architect in writing.

C. Deposit concrete continuously or in layers of such thickness that no new concrete will be placed on concrete that has hardened enough to cause seams or planes of weakness. If a section cannot be placed continuously, provide construction joints as specified. Deposit concrete to avoid segregation.

D. Deposit concrete in forms in horizontal layers no deeper than 24 inches and in a manner to avoid inclined construction joints. Place each layer while preceding layer is still plastic, to avoid cold joints.

1. Consolidate placed concrete with mechanical vibrating equipment. Use equipment and procedures for consolidating concrete recommended by ACI 309R.
2. Do not use vibrators to transport concrete inside forms. Insert and withdraw vibrators vertically at uniformly spaced locations no farther than the visible effectiveness of the vibrator. Place vibrators to rapidly penetrate placed layer and at least 6 inches into preceding layer. Do not insert vibrators into lower layers of concrete that have begun to lose plasticity. At each insertion, limit duration of vibration to time necessary to consolidate concrete and complete embedment of reinforcement and other embedded items without causing mix constituents to segregate.

E. Deposit and consolidate concrete for floors and slabs in a continuous operation, within limits of construction joints, until placement of a panel or section is complete.

1. Consolidate concrete during placement operations so concrete is thoroughly worked around reinforcement and other embedded items and into corners.
3. Screed slab surfaces with a straightedge and strike off to correct elevations.
4. Slope surfaces uniformly to drains where required.
5. Begin initial floating using bull floats or darbies to form a uniform and open-textured surface plane, free of humps or hollows, before excess moisture or bleedwater appears on the surface. Do not further disturb slab surfaces before starting finishing operations.

F. Hot-Weather Placement: Place concrete according to recommendations in ACI 305R and as follows, when hot-weather conditions exist:

1. Cool ingredients before mixing to maintain concrete temperature below 90 deg F at time of placement. Chilled mixing water or chopped ice may be used to control temperature, provided water equivalent of ice is calculated to total amount of mixing water. Using liquid nitrogen to cool concrete is Contractor's option.
2. Cover steel reinforcement with water-soaked burlap so steel temperature will not exceed ambient air temperature immediately before embedding in concrete.
3. Fog-spray forms, steel reinforcement, and subgrade just before placing concrete. Keep subgrade moisture uniform without standing water, soft spots, or dry areas.

3.9 FINISHING FORMED SURFACES
A. Rough-Formed Finish: As-cast concrete texture imparted by form-facing material with tie holes and defective areas repaired and patched. Remove fins and other projections exceeding ACI 347R limits for class of surface specified.

B. Smooth-Formed Finish: As-cast concrete texture imparted by form-facing material, arranged in an orderly and symmetrical manner with a minimum of seams. Repair and patch tie holes and defective areas. Remove fins and other projections exceeding 1/8 inch in height.

1. Apply to concrete surfaces exposed to public view or to be covered with a coating or covering material applied directly to concrete, such as waterproofing, dampproofing, veneer plaster, or painting.
2. Do not apply rubbed finish to smooth-formed finish.

C. Rubbed Finish: Apply the following to smooth-formed finished concrete:

1. Smooth-Rubbed Finish: Not later than one day after form removal, moisten concrete surfaces and rub with carborundum brick or another abrasive until producing a uniform color and texture. Do not apply cement grout other than that created by the rubbing process.
2. Grout-Cleaned Finish: Wet concrete surfaces and apply grout of a consistency of thick paint to coat surfaces and fill small holes. Mix one part portland cement to one and one-half parts fine sand with a 1:1 mixture of bonding admixture and water. Add white portland cement in amounts determined by trial patches so color of dry grout will match adjacent surfaces. Scrub grout into voids and remove excess grout. When grout whitens, rub surface with clean burlap and keep surface damp by fog spray for at least 36 hours.
3. Cork-Floated Finish: Wet concrete surfaces and apply a stiff grout. Mix one part portland cement and one part fine sand with a 1:1 mixture of bonding agent and water. Add white portland cement in amounts determined by trial patches so color of dry grout will match adjacent surfaces. Compress grout into voids by grinding surface. In a swirling motion, finish surface with a cork float.

D. Related Unformed Surfaces: At tops of walls, horizontal offsets, and similar unformed surfaces adjacent to formed surfaces, strike off smooth and finish with a texture matching adjacent formed surfaces. Continue final surface treatment of formed surfaces uniformly across adjacent unformed surfaces, unless otherwise indicated.

3.10 FINISHING FLOORS AND SLABS

A. General: Comply with recommendations in ACI 302.1R for screeding, restraightening, and finishing operations for concrete surfaces. Do not wet concrete surfaces.

B. Scratch Finish: While still plastic, texture concrete surface that has been screeded and bull-floated or darbied. Use stiff brushes, brooms, or rakes.

1. Apply scratch finish to surfaces indicated and to surfaces to receive concrete floor topping or mortar setting beds for ceramic or quarry tile, portland cement terrazzo, and other bonded cementitious floor finishes.
C. Float Finish: Consolidate surface with power-driven floats or by hand floating if area is small or inaccessible to power driven floats. Restraighten, cut down high spots, and fill low spots. Repeat float passes and restraightening until surface is left with a uniform, smooth, granular texture.

1. Apply float finish to surfaces indicated, to surfaces to receive trowel finish, and to floor and slab surfaces to be covered with fluid-applied or sheet waterproofing, built-up or membrane roofing, or sand-bed terrazzo.

D. Trowel Finish: After applying float finish, apply first trowel finish and consolidate concrete by hand or power-driven trowel. Continue troweling passes and restraighten until surface is free of trowel marks and uniform in texture and appearance. Grind smooth any surface defects that would telegraph through applied coatings or floor coverings.

1. Apply a trowel finish to surfaces indicated and to floor and slab surfaces exposed to view or to be covered with resilient flooring, carpet, ceramic or quarry tile set over a cleavage membrane, paint, or another thin film-finish coating system
2. Finish surfaces to the following tolerances, measured within 24 hours according to ASTM E 1155/E 1155M for a randomly trafficked floor surface:
 a. Specified overall values of flatness, \(F(F) \) 35; and levelness, \(F(L) \) 25; with minimum local values of flatness, \(F(F) \) 24; and levelness, \(F(L) \) 17; for slabs-on-grade.
 b. Specified overall values of flatness, \(F(F) \) 30; and levelness, \(F(L) \) 20; with minimum local values of flatness, \(F(F) \) 24; and levelness, \(F(L) \) 15; for suspended slabs.
3. Finish and measure surface so gap at any point between concrete surface and an unleveled freestanding 10-foot-long straightedge, resting on two high spots and placed anywhere on the surface, does not exceed the following:
 a. 1/8 inch.

E. Trowel and Fine-Broom Finish: Apply a partial trowel finish, stopping after second troweling, to surfaces indicated and to surfaces where ceramic or quarry tile is to be installed by either thickset or thin-set method. Immediately after second troweling, and when concrete is still plastic, slightly scarify surface with a fine broom.

F. Broom Finish: Apply a broom finish to exterior concrete platforms, steps, and ramps, and elsewhere as indicated.

1. Immediately after float finishing, slightly roughen trafficked surface by brooming with fiber-bristle broom perpendicular to main traffic route. Coordinate required final finish with Architect before application.

G. Slip-Resistive Aggregate Finish: Before final floating, apply slip-resistive aggregate finish where indicated and to concrete stair treads, platforms, and ramps. Apply according to manufacturer's written instructions and as follows:
1. Uniformly spread 25-lb/100 sq. ft. of dampened slip-resistive aggregate over surface in one or two applications. Tamp aggregate flush with surface, but do not force below surface.

2. After broadcasting and tamping, apply float finish.

3. After curing, lightly work surface with a steel wire brush or an abrasive stone, and water to expose slip-resistive aggregate.

H. Mineral Dry-Shake Floor Hardener Finish: After initial floating, apply mineral dry-shake materials to surfaces according to manufacturer’s written instructions and as follows:

1. Uniformly apply mineral dry-shake materials at a rate of 100-lb/100 sq. ft., unless greater amount is recommended by manufacturer.

2. Uniformly distribute approximately two-thirds of mineral dry-shake materials over surface by hand or with mechanical spreader, and embed by power floating. Follow power floating with a second mineral dry-shake application, uniformly distributing remainder of material, and embed by power floating.

3. After final floating, apply a trowel finish. Cure concrete with curing compound recommended by dry-shake material manufacturer and apply immediately after final finishing.

3.11 MISCELLANEOUS CONCRETE ITEMS

A. Filling In: Fill in holes and openings left in concrete structures, unless otherwise indicated, after work of other trades is in place. Mix, place, and cure concrete, as specified, to blend with in-place construction. Provide other miscellaneous concrete filling indicated or required to complete Work.

B. Curbs: Provide monolithic finish to interior curbs by stripping forms while concrete is still green and by steel-troweling surfaces to a hard, dense finish with corners, intersections, and terminations slightly rounded.

C. Equipment Bases and Foundations: Provide machine and equipment bases and foundations as shown on Drawings. Set anchor bolts for machines and equipment at correct elevations, complying with diagrams or templates of manufacturer furnishing machines and equipment.

3.12 CONCRETE PROTECTION AND CURING

A. General: Protect freshly placed concrete from premature drying and excessive hot temperatures. Comply with recommendations in ACI 305R for hot-weather protection during curing.

B. Evaporation Retarder: Apply evaporation retarder to unformed concrete surfaces if hot, dry, or windy conditions cause moisture loss approaching 0.2 lb/sq. ft. x h before and during finishing operations. Apply according to manufacturer’s written instructions after placing, screeding, and bull floating or darbying concrete, but before float finishing.
C. Formed Surfaces: Cure formed concrete surfaces, including underside of beams, supported slabs, and other similar surfaces. If forms remain during curing period, moist cure after loosening forms. If removing forms before end of curing period, continue curing by one or a combination of the following methods:

D. Unformed Surfaces: Begin curing immediately after finishing concrete. Cure unformed surfaces, including floors and slabs, concrete floor toppings, and other surfaces, by one or a combination of the following methods:

1. Moisture Curing: Keep surfaces continuously moist for not less than seven days with the following materials:
 a. Water.
 b. Continuous water-fog spray.
 c. Absorbent cover, water saturated, and kept continuously wet. Cover concrete surfaces and edges with 12-inch lap over adjacent absorbent covers.

2. Moisture-Retaining-Cover Curing: Cover concrete surfaces with moisture-retaining cover for curing concrete, placed in widest practicable width, with sides and ends lapped at least 12 inches, and sealed by waterproof tape or adhesive. Cure for not less than seven days. Immediately repair any holes or tears during curing period using cover material and waterproof tape.
 a. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive floor coverings.
 b. Moisture cure or use moisture-retaining covers to cure concrete surfaces to receive penetrating liquid floor treatments.
 c. Cure concrete surfaces to receive floor coverings with either a moisture-retaining cover or a curing compound that the manufacturer recommends for use with floor coverings.

3. Curing Compound: Apply uniformly in continuous operation by power spray or roller according to manufacturer’s written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Maintain continuity of coating and repair damage during curing period.

4. Curing and Sealing Compound: Apply uniformly to floors and slabs indicated in a continuous operation by power spray or roller according to manufacturer’s written instructions. Recoat areas subjected to heavy rainfall within three hours after initial application. Repeat process 24 hours later and apply a second coat. Maintain continuity of coating and repair damage during curing period.

3.13 LIQUID FLOOR TREATMENTS

A. Penetrating Liquid Floor Treatment: Prepare, apply, and finish penetrating liquid floor treatment according to manufacturer’s written instructions.

1. Remove curing compounds, sealers, oil, dirt, laitance, and other contaminants and complete surface repairs.
2. Do not apply to concrete that is less than seven days old.
3. Apply liquid until surface is saturated, scrubbing into surface until a gel forms; rewet; and repeat brooming or scrubbing. Rinse with water; remove excess material until surface is dry. Apply a second coat in a similar manner if surface is rough or porous.

B. Sealing Coat: Uniformly apply a continuous sealing coat of curing and sealing compound to hardened concrete by power spray or roller according to manufacturer's written instructions.

3.14 JOINT FILLING

A. Prepare, clean, and install joint filler according to manufacturer's written instructions.

 1. Defer joint filling until concrete has aged at least six months. Do not fill joints until construction traffic has permanently ceased.

B. Remove dirt, debris, saw cuttings, curing compounds, and sealers from joints; leave contact faces of joint clean and dry.

C. Install semirigid epoxy joint filler full depth in saw-cut joints and at least 2 inches deep in formed joints. Overfill joint and trim joint filler flush with top of joint after hardening.

3.15 CONCRETE SURFACE REPAIRS

A. Defective Concrete: Repair and patch defective areas when approved by Architect. Remove and replace concrete that cannot be repaired and patched to Architect's approval.

B. Patching Mortar: Mix dry-pack patching mortar, consisting of one part portland cement to two and one-half parts fine aggregate passing a No. 16 sieve, using only enough water for handling and placing.

C. Repairing Formed Surfaces: Surface defects include color and texture irregularities, cracks, spalls, air bubbles, honeycombs, rock pockets, fins and other projections on the surface, and stains and other discolorations that cannot be removed by cleaning.

 1. Immediately after form removal, cut out honeycombs, rock pockets, and voids more than 1/2 inch in any dimension in solid concrete but not less than 1 inch in depth. Make edges of cuts perpendicular to concrete surface. Clean, dampen with water, and brush-coat holes and voids with bonding agent. Fill and compact with patching mortar before bonding agent has dried. Fill form-tie voids with patching mortar or cone plugs secured in place with bonding agent.

 2. Repair defects on surfaces exposed to view by blending white portland cement and standard portland cement so that, when dry, patching mortar will match surrounding color. Patch a test area at inconspicuous locations to verify mixture and color match before proceeding with patching. Compact mortar in place and strike off slightly higher than surrounding surface.

 3. Repair defects on concealed formed surfaces that affect concrete's durability and structural performance as determined by Architect.
D. Repairing Unformed Surfaces: Test unformed surfaces, such as floors and slabs, for finish and verify surface tolerances specified for each surface. Correct low and high areas. Test surfaces sloped to drain for trueness of slope and smoothness; use a sloped template.

1. Repair finished surfaces containing defects. Surface defects include spalls, popouts, honeycombs, rock pockets, crazing and cracks in excess of 0.01 inch wide or that penetrate to reinforcement or completely through un-reinforced sections regardless of width, and other objectionable conditions.

2. After concrete has cured at least 14 days, correct high areas by grinding.

3. Correct localized low areas during or immediately after completing surface finishing operations by cutting out low areas and replacing with patching mortar. Finish repaired areas to blend into adjacent concrete.

4. Correct other low areas scheduled to receive floor coverings with a repair underlayment. Prepare, mix, and apply repair underlayment and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface. Feather edges to match adjacent floor elevations.

5. Correct other low areas scheduled to remain exposed with a repair topping. Cut out low areas to ensure a minimum repair topping depth of 1/4 inch to match adjacent floor elevations. Prepare, mix, and apply repair topping and primer according to manufacturer's written instructions to produce a smooth, uniform, plane, and level surface.

6. Repair defective areas, except random cracks and single holes 1 inch or less in diameter, by cutting out and replacing with fresh concrete. Remove defective areas with clean, square cuts and expose steel reinforcement with at least 3/4 inch clearance all around. Dampen concrete surfaces in contact with patching concrete and apply bonding agent. Mix patching concrete of same materials and mix as original concrete except without coarse aggregate. Place, compact, and finish to blend with adjacent finished concrete. Cure in same manner as adjacent concrete.

7. Repair random cracks and single holes 1 inch or less in diameter with patching mortar. Groove top of cracks and cut out holes to sound concrete and clean off dust, dirt, and loose particles. Dampen cleaned concrete surfaces and apply bonding agent. Place patching mortar before bonding agent has dried. Compact patching mortar and finish to match adjacent concrete. Keep patched area continuously moist for at least 72 hours.

E. Perform structural repairs of concrete, subject to Architect's approval, using epoxy adhesive and patching mortar.

F. Repair materials and installation not specified above may be used, subject to Architect's approval.

3.16 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified independent testing and inspecting agency to sample materials, perform tests, and submit test reports during concrete placement according to requirements specified in this Article.
B. Testing Services: Testing of composite samples of fresh concrete obtained according to ASTM C 172 shall be performed according to the following requirements:

Testing Frequency: Obtain one composite sample for each day's pour of each concrete mix exceeding 5 cu. yd., but less than 25 cu. yd., plus one set for each additional 50 cu. yd. or fraction thereof.

Slump: ASTM C 143; one test at point of placement for each composite sample, but not less than one test for each day's pour of each concrete mix. Perform additional tests when concrete consistency appears to change.

1. Air Content: ASTM C 231, pressure method, for normal-weight concrete; ASTM C 173, volumetric method, for structural lightweight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mix.

2. Concrete Temperature: ASTM C 1064; one test hourly when 80 deg F and above, and one test for each composite sample.

3. Unit Weight: ASTM C 567, fresh unit weight of structural lightweight concrete; one test for each composite sample, but not less than one test for each day's pour of each concrete mix.

4. Compression Test Specimens: ASTM C 31/C 31M; cast and laboratory cure one set of four standard cylinder specimens for each composite sample.
 a. Cast and field cure one set of four standard cylinder specimens for each composite sample.

5. Compressive-Strength Tests: ASTM C 39; test two laboratory-cured specimens at 7 days and two at 28 days.
 a. Test two field-cured specimens at 7 days and two at 28 days.
 b. A compressive-strength test shall be the average compressive strength from two specimens obtained from same composite sample and tested at age indicated.

C. When strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete.

D. Strength of each concrete mix will be satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi.

E. Test results shall be reported in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. Reports of compressive-strength tests shall contain Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mix proportions and materials, compressive breaking strength, and type of break for both 7-and 28-day tests.
F. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but will not be used as sole basis for approval or rejection of concrete.

G. Additional Tests: Testing and inspecting agency shall make additional tests of concrete when test results indicate that slump, air entrainment, compressive strengths, or other requirements have not been met, as directed by Architect. Testing and inspecting agency may conduct tests to determine adequacy of concrete by cored cylinders complying with ASTM C 42 or by other methods as directed by Architect.

END OF SECTION 03300
SECTION 05120 - STRUCTURAL STEEL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section.

1.2 SUMMARY

A. This Section includes structural steel.

B. This Section includes structural steel and architecturally exposed structural steel.

C. Related Sections: The following Sections contain requirements that relate to this Section:

1. Division 1 Section "Quality Control" for independent testing agency procedures and administrative requirements.
2. Division 5 Section "Steel Deck" for field installation of shear connectors.
3. Division 5 Section "Metal Fabrications" for loose steel bearing plates and miscellaneous steel framing.
4. Division 9 Section "Special Coatings" for surface preparation and priming requirements.
5. Division 9 Section "Painting" for surface preparation and priming requirements.

1.3 PERFORMANCE REQUIREMENTS

A. Structural Performance: Engineer structural steel connections required by the Contract Documents to be selected or completed by the fabricator to withstand design loadings indicated.

B. Engineering Responsibility: Engage a fabricator who utilizes a qualified professional engineer to prepare calculations, Shop Drawings, and other structural data for structural steel connections.

1.4 SUBMITTALS

A. General: Submit each item in this Article according to the Conditions of the Contract and Division 1 Specification Sections.

B. Product Data for each type of product specified.

C. Shop Drawings detailing fabrication of structural steel components.
1. Include details of cuts, connections, splices, camber, holes, and other pertinent data.
2. Indicate welds by standard AWS symbols, distinguishing between shop and field welds, and show size, length, and type of each weld.
3. Indicate type, size, and length of bolts, distinguishing between shop and field bolts. Identify high-strength bolted slip-critical, direct-tension, or tensioned shear/bearing connections.
4. Include Shop Drawings signed and sealed by a qualified professional engineer responsible for their preparation.

D. Qualification data for firms and persons specified in the "Quality Assurance" Article to demonstrate their capabilities and experience. Include lists of completed projects with project names and addresses, names and addresses of architects and owners, and other information specified.

E. Mill test reports signed by manufacturers certifying that their products, including the following, comply with requirements.
 1. Structural steel, including chemical and physical properties.
 2. Bolts, nuts, and washers, including mechanical properties and chemical analysis.
 3. Direct-tension indicators.
 4. Shear stud connectors.
 5. Shop primers.

1.5 QUALITY ASSURANCE

A. Installer Qualifications: Engage an experienced Installer who has completed structural steel work similar in material, design, and extent to that indicated for this Project and with a record of successful in-service performance.

B. Fabricator Qualifications: Engage a firm experienced in fabricating structural steel similar to that indicated for this Project and with a record of successful in-service performance, as well as sufficient production capacity to fabricate structural steel without delaying the Work.

 1. Fabricator must participate in the AISC Quality Certification Program and be designated an AISC-Certified Plant as follows:
 a. Category: Category I, conventional steel structures.
 b. Category: Category II, complex steel building structures.
 c. Fabricator shall be registered with and approved by authorities having jurisdiction.

C. Comply with applicable provisions of the following specifications and documents:

 2. AISC's "Load and Resistance Factor Design (LFRD) Specification for Structural Steel Buildings."
5. AISC's "Seismic Provisions for Structural Steel Buildings."
6. ASTM A 6 (ASTM A 6M) "Specification for General Requirements for Rolled Steel Plates, Shapes, Sheet Piling, and Bars for Structural Use."

D. Professional Engineer Qualifications: A professional engineer who is legally authorized to practice in the jurisdiction where Project is located and who is experienced in providing engineering services of the kind indicated. Engineering services are defined as those performed for projects with structural steel framing that are similar to that indicated for this Project in material, design, and extent.

E. Welding Standards: Comply with applicable provisions of AWS D1.1 "Structural Welding Code--Steel."
 1. Present evidence that each welder has satisfactorily passed AWS qualification tests for welding processes involved and, if pertinent, has undergone recertification.

F. Mockups: Prior to installing architecturally exposed structural steel, construct mockups for each form of construction and finish required to demonstrate aesthetic effects as well as qualities of materials and execution. Build mockups to comply with the following requirements, using materials indicated for final unit of Work.
 1. Locate mockups on-site in the location and of the size indicated or, if not indicated, as directed by Architect.
 2. Notify Architect one week in advance of the dates and times when mockups will be constructed.
 3. Demonstrate the proposed range of aesthetic effects and workmanship of steel surfaces and welded and bolted connections.
 a. Coordinate finish painting requirements of mockups with Division 9 Section "Painting."
 4. Obtain Architect's approval of mockups before start of final unit of Work.
 5. Retain and maintain mockups during construction in an undisturbed condition as a standard for judging the completed Work.
 a. When directed, demolish and remove mockups from Project site.
 b. Approved mockups in an undisturbed condition at the time of Substantial Completion may become part of the completed Work.

G. Pre-installation Conference: Conduct conference at Project site to comply with requirements of Division 1 Section "Project Meetings."
1.6 DELIVERY, STORAGE, AND HANDLING

A. Deliver structural steel to Project site in such quantities and at such times to ensure continuity of installation.

B. Store materials to permit easy access for inspection and identification. Keep steel members off ground by using pallets, platforms, or other supports. Protect steel members and packaged materials from erosion and deterioration.

1. Store fasteners in a protected place. Clean and re-lubricate bolts and nuts that become dry or rusty before use.
2. Do not store materials on structure in a manner that might cause distortion or damage to members or supporting structures. Repair or replace damaged materials or structures as directed.

1.7 SEQUENCING

A. Supply anchorage items to be embedded in or attached to other construction without delaying the Work. Provide setting diagrams, templates, instructions, and directions, as required, for installation.

PART 2 - PRODUCTS

2.1 MATERIALS

A. Structural Steel Shapes, Plates, and Bars: As follows:

3. High-Strength, Low-Alloy Structural Steel: ASTM A 588 (ASTM A 588M), Grade 50, corrosion resistant.

B. Cold-Formed Structural Steel Tubing: ASTM A 500, Grade B.

C. Hot-Formed Structural Steel Tubing: ASTM A 501.

D. Steel Pipe: ASTM A 53, Type E or S, Grade B.

1. Weight Class: Standard.
2. Weight Class: Extra strong.
3. Weight Class: Double-extra strong.
5. Finish: Galvanized.
6. Finish: Black, except where indicated to be galvanized.

G. Shear Connectors: ASTM A 108, Grade 1015 through 1020, headed-stud type, cold-finished carbon steel, AWS D1.1, Type B.

H. Anchor Rods, Bolts, Nuts, and Washers: As follows:
 4. Headed Bolts: ASTM A 307, Grade A (ASTM F 568, Property Class 4.6); carbon-steel, hex-head bolts; and carbon-steel nuts.
 5. Headed Bolts: ASTM A 325 (ASTM A 325M), Type 1, heavy hex steel structural bolts and heavy hex carbon-steel nuts.
 6. Headed Bolts: ASTM A 490 (ASTM A 490M), Type 1, heavy hex steel structural bolts and heavy hex carbon-steel nuts.

I. Non-high-Strength Bolts, Nuts, and Washers: ASTM A 307, Grade A (ASTM F 568, Property Class 4.6); carbon-steel, hex-head bolts; carbon-steel nuts; and flat, unhardened steel washers.
 1. Finish: Plain, uncoated.
 2. Finish: Hot-dip zinc-coating, ASTM A 153, Class C.

J. High-Strength Bolts, Nuts, and Washers: ASTM A 325 (ASTM A 325M), Type 1, heavy hex steel structural bolts, heavy hex carbon-steel nuts, and hardened carbon-steel washers.
 1. Finish: Plain, uncoated.
 2. Finish: Hot-dip zinc-coating, ASTM A 153, Class C.
 4. Direct-Tension Indicators: ASTM F 959, Type 325.
 a. Finish: Plain, uncoated.
 c. Finish: Mechanically deposited zinc-coating, ASTM B 695, Class 50, epoxy coated.

K. High-Strength Bolts, Nuts, and Washers: ASTM A 490 (ASTM A 490M), Type 1, heavy hex steel structural bolts, heavy hex carbon-steel nuts, and hardened carbon-steel washers, uncoated.
 1. Direct-Tension Indicators: ASTM F 959, Type 490, uncoated.

L. Welding Electrodes: Comply with AWS requirements.

2.2 PRIMER
A. Primer: Fast-curing, lead- and chromate-free, universal modified-alkyd primer with good resistance to normal atmospheric corrosion, complying with performance requirements of FS TT-P-664.

B. Primer: SSPC-Paint 25; red iron oxide, zinc oxide, raw linseed oil and alkyd primer.

C. Primer: SSPC-Paint 15, Type I, red oxide.

D. Primer: Fabricator’s standard lead- and chromate-free, non-asphaltic, rust-inhibiting primer.

E. Primer: Non-asphaltic primer complying with SSPC’s "Painting System Guide No. 7.00."

F. Galvanizing Repair Paint: High-zinc-dust-content paint for re-galvanizing welds and repair painting galvanized steel, with dry film containing not less than 93 percent zinc dust by weight, and complying with DOD-P-21035A or SSPC-Paint 20.

2.3 GROUT

A. Cement Grout: Portland cement, ASTM C 150, Type I; and clean, natural sand, ASTM C 404, Size No. 2. Mix at ratio of 1 part cement to 2-1/2 parts sand, by volume, with minimum water required for placement and hydration.

B. Metallic, Shrinkage-Resistant Grout: Premixed, factory-packaged, ferrous aggregate grout, complying with ASTM C 1107, of consistency suitable for application, and a 30-minute working time.

C. Non-metallic, Shrinkage-Resistant Grout: Premixed, non-metallic, non-corrosive, non-staining grout containing selected silica sands, portland cement, shrinkage compensating agents, plasticizing and water-reducing agents, complying with ASTM C 1107, of consistency suitable for application, and a 30-minute working time.

2.4 FABRICATION

A. Fabricate and assemble structural steel in shop to greatest extent possible. Fabricate structural steel according to AISC specifications referenced in this Section and in Shop Drawings.

1. Camber structural steel members where indicated.
2. Identify high-strength structural steel according to ASTM A 6 (ASTM A 6M) and maintain markings until steel has been erected.
3. Mark and match-mark materials for field assembly.
4. Fabricate for delivery a sequence that will expedite erection and minimize field handling of structural steel.
5. Complete structural steel assemblies, including welding of units, before starting shop-priming operations.
B. Fabricate architecturally exposed structural steel with exposed surfaces smooth, square, and free of surface blemishes, including pitting, rust and scale seam marks, roller marks, rolled trade names, and roughness.

1. Remove blemishes by filling, grinding, or by welding and grinding, prior to cleaning, treating, and shop priming.
2. Comply with fabrication requirements, including tolerance limits, of AISC’s ”Code of Standard Practice for Steel Buildings and Bridges” for architecturally exposed structural steel.

C. Thermal Cutting: Perform thermal cutting by machine to greatest extent possible.

1. Plane thermally cut edges to be welded.

D. Finishing: Accurately mill ends of columns and other members transmitting loads in bearing.

E. Shear Connectors: Prepare steel surfaces as recommended by manufacturer of shear connectors. Use automatic end welding of headed-stud shear connectors according to AWS D1.1 and manufacturer's printed instructions.

F. Steel Wall Framing: Select true and straight members for fabricating steel wall framing to be attached to structural steel framing. Straighten as required to provide uniform, square, and true members in completed wall framing.

G. Welded Door Frames: Build up welded door frames attached to structural steel framing. Weld exposed joints continuously and grind smooth. Plug-weld fixed steel bar stops to frames. Secure removable stops to frames with countersunk, cross-recessed head machine screws, uniformly spaced not more than 10 inches (250 mm) O/C., unless otherwise indicated.

H. Holes: Provide holes required for securing other work to structural steel framing and for passage of other work through steel framing members, as shown on Shop Drawings.

1. Cut, drill, or punch holes perpendicular to metal surfaces. Do not flame-cut holes or enlarge holes by burning. Drill holes in bearing plates.
2. Weld threaded nuts to framing and other specialty items as indicated to receive other work.

2.5 SHOP CONNECTIONS

A. Shop install and tighten non-high-strength bolts, except where high-strength bolts are indicated.

B. Shop install and tighten high-strength bolts according to RCSC’s ”Specification for Structural Joints Using ASTM A 325 or A 490 Bolts.”

C. Shop install and tighten high-strength bolts according to RCSC’s ”Load and Resistance Factor Design Specification for Structural Joints Using ASTM A 325 or A 490 Bolts.”
1. Bolts: ASTM A 325 (ASTM A 325M) high-strength bolts, unless otherwise indicated.
2. Bolts: ASTM A 490 (ASTM A 490M) high-strength bolts, unless otherwise indicated.
3. Connection Type: Snug tightened, unless indicated as slip-critical, direct-tension, or tensioned shear/bearing connections.
4. Connection Type: Slip-critical, direct-tension, or tensioned shear/bearing connections as indicated.

D. Weld Connections: Comply with AWS D1.1 for procedures, appearance and quality of welds, and methods used in correcting welding work.

1. Assemble and weld built-up sections by methods that will maintain true alignment of axes without warp.
2. Verify that weld sizes, fabrication sequence, and equipment used for architecturally exposed structural steel will limit distortions to allowable tolerances. Prevent surface bleeding of back-side welding on exposed steel surfaces. Grind smooth exposed fillet welds 1/2 inch (13 mm) and larger. Grind flush butt welds. Dress exposed welds.

2.6 PREFABRICATED BUILDING COLUMNS

A. Definition: Prefabricated building columns consist of assemblies composed of load-bearing structural steel members encased in manufacturer's standard insulating material for fire protection and wrapped in outer non-load-bearing steel sheet enclosures.

B. Fire-Test-Response Characteristics: Provide prefabricated building column assemblies identical to those of assemblies tested for the following fire-resistance ratings per ASTM E 119 by UL or another testing and inspecting agency acceptable to authorities having jurisdiction. Identify columns with appropriate markings of applicable testing and inspecting agency.

1. Fire-Resistance Rating: 4 hours.
2. Fire-Resistance Rating: 3 hours.
3. Fire-Resistance Rating: 2 hours.

C. Column Configuration: Provide columns of sizes and shapes indicated. Fabricate connections to comply with details shown or required to suit type of structure indicated.

1. Concrete Fill: Structural concrete, manufacturer's standard mix, with a minimum 28-day compressive strength of 5000 psi (34.5 MPa), machine mixed and mechanically vibrated during placement to produce a concrete core free of voids.

D. Available Manufacturers: Subject to compliance with requirements, manufacturers offering prefabricated building columns that may be incorporated in the Work include, but are not limited to, the following:
E. Manufacturers: Subject to compliance with requirements, provide prefabricated building columns by one of the following:

1. Black Rock Column, Inc.
2. Dean Lally L.P.; Firetrol Division.

2.7 SHOP PRIMING

A. Shop prime steel surfaces, except the following:

1. Surfaces embedded in concrete or mortar. Extend priming of partially embedded members to a depth of 2 inches (50 mm).
2. Surfaces to be field welded.
3. Surfaces to be high-strength bolted with slip-critical connections.
4. Surfaces to receive sprayed-on fireproofing.
5. Galvanized surfaces.

B. Surface Preparation: Clean surfaces to be painted. Remove loose rust, loose mill scale, and spatter, slag, or flux deposits. Prepare surfaces according to SSPC specifications as follows:

1. SSPC-SP 5 "White Metal Blast Cleaning."
2. SSPC-SP 6 "Commercial Blast Cleaning."
3. SSPC-SP 10 "Near-White Blast Cleaning."
4. SSPC-SP 11 "Power Tool Cleaning to Bare Metal."

C. Priming: Immediately after surface preparation, apply primer according to manufacturer's instructions and at rate recommended by SSPC to provide a dry film thickness of not less than 1.5 mils (0.038 mm). Use priming methods that result in full coverage of joints, corners, edges, and exposed surfaces.

1. Stripe paint corners, crevices, bolts, welds, and sharp edges.
2. Apply 2 coats of shop paint to inaccessible surfaces after assembly or erection. Change color of second coat to distinguish it from first.

D. Painting: Apply a 1-coat, non-asphaltic primer complying with SSPC's "Painting System Guide No. 7.00" to provide a dry film thickness of not less than 1.5 mils (0.038 mm).

2.8 GALVANIZING

A. Hot-Dip Galvanized Finish: Apply zinc coating by the hot-dip process to structural steel indicated for galvanizing according to ASTM A 123.

2.9 SOURCE QUALITY CONTROL

A. Owner will engage an independent testing and inspecting agency to perform shop inspections and tests and to prepare test reports.
1. Testing agency will conduct and interpret tests and state in each report whether test specimens comply with or deviate from requirements.

2. Provide testing agency with access to places where structural steel Work is being fabricated or produced so required inspection and testing can be accomplished.

B. Correct deficiencies in or remove and replace structural steel that inspections and test reports indicate do not comply with specified requirements.

C. Additional testing, at Contractor's expense, will be performed to determine compliance of corrected Work with specified requirements.

D. Shop-bolted connections will be tested and inspected according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."

E. Shop-bolted connections will be tested and inspected according to RCSC's "Load and Resistance Factor Design Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."

1. Direct-tension indicator gaps will be verified to comply with ASTM F 959, Table 2.

F. In addition to visual inspection, shop-welded connections will be inspected and tested according to AWS D1.1 and the inspection procedures listed below, at testing agency's option.

1. Liquid Penetrant Inspection: ASTM E 165.
2. Magnetic Particle Inspection: ASTM E 709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration will not be accepted.
3. Radiographic Inspection: ASTM E 94 and ASTM E 142; minimum quality level "2-2T."

G. In addition to visual inspection, shop-welded shear connectors will be inspected and tested according to requirements of AWS D1.1 for stud welding and as follows:

1. Bend tests will be performed when visual inspections reveal either less than a continuous 360-degree flash or welding repairs to any shear connector.
2. Tests will be conducted on additional shear connectors when weld fracture occurs on shear connectors already tested, according to requirements of AWS D1.1.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Before erection proceeds, and with the steel erector present, verify elevations of concrete and masonry bearing surfaces and locations of anchorages for compliance with requirements.
B. Do not proceed with erection until unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Provide temporary shores, guys, braces, and other supports during erection to keep structural steel secure, plumb, and in alignment against temporary construction loads and loads equal in intensity to design loads. Remove temporary supports when permanent structural steel, connections, and bracing are in place, unless otherwise indicated.

1. Do not remove temporary shoring supporting composite deck construction until cast-in-place concrete has attained its design compressive strength.

3.3 ERECTION

A. Set structural steel accurately in locations and to elevations indicated and according to AISC specifications referenced in this Section.

B. Base and Bearing Plates: Clean concrete and masonry bearing surfaces of bond-reducing materials and roughen surfaces prior to setting base and bearing plates. Clean bottom surface of base and bearing plates.

1. Set base and bearing plates for structural members on wedges, shims, or setting nuts as required.
2. Tighten anchor bolts after supported members have been positioned and plumbed. Do not remove wedges or shims but, if protruding, cut off flush with edge of base or bearing plate prior to packing with grout.
3. Pack grout solidly between bearing surfaces and plates so no voids remain. Finish exposed surfaces, protect installed materials, and allow to cure.
 a. Comply with manufacturer's instructions for proprietary grout materials.

C. Maintain erection tolerances of structural steel within AISC's "Code of Standard Practice for Steel Buildings and Bridges."

D. Align and adjust various members forming part of complete frame or structure before permanently fastening. Before assembly, clean bearing surfaces and other surfaces that will be in permanent contact. Perform necessary adjustments to compensate for discrepancies in elevations and alignment.

1. Level and plumb individual members of structure.
2. Establish required leveling and plumbing measurements on mean operating temperature of structure. Make allowances for difference between temperature at time of erection and mean temperature at which structure will be when completed and in service.
E. Splice members only where indicated.

F. Remove erection bolts on welded, architecturally exposed structural steel; fill holes with plug welds; and grind smooth at exposed surfaces.

G. Do not use thermal cutting during erection.

H. Finish sections thermally cut during erection equal to a sheared appearance.

I. Do not enlarge unfair holes in members by burning or by using drift pins. Ream holes that must be enlarged to admit bolts.

3.4 FIELD CONNECTIONS

A. Install and tighten nonhigh-strength bolts, except where high-strength bolts are indicated.

B. Install and tighten high-strength bolts according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."

C. Install and tighten high-strength bolts according to RCSC's "Load and Resistance Factor Design Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."

1. Bolts: ASTM A 325 (ASTM A 325M) high-strength bolts, unless otherwise indicated.
2. Bolts: ASTM A 490 (ASTM A 490M) high-strength bolts, unless otherwise indicated.
3. Connection Type: Snug tightened, unless indicated as slip-critical, direct-tension, or tensioned shear/bearing connections.
4. Connection Type: Slip-critical, direct-tension, or tensioned shear/bearing connections as indicated.

D. Weld Connections: Comply with AWS D1.1 for procedures, appearance and quality of welds, and methods used in correcting welding work.

1. Comply with AISC specifications referenced in this Section for bearing, adequacy of temporary connections, alignment, and removal of paint on surfaces adjacent to field welds.
2. Assemble and weld built-up sections by methods that will maintain true alignment of axes without warp.
3. Verify that weld sizes, fabrication sequence, and equipment used for architecturally exposed structural steel will limit distortions to allowable tolerances. Prevent surface bleeding of back-side welding on exposed steel surfaces. Grind smooth exposed fillet welds 1/2 inch (13 mm) and larger. Grind flush butt welds. Dress exposed welds.

3.5 PREFABRICATED BUILDING COLUMNS
A. Install prefabricated building columns to comply with AISC specifications referenced in this Section, manufacturer's recommendations, and requirements of the testing and inspecting agency that apply to the fire-resistance rating indicated.

3.6 FIELD QUALITY CONTROL

A. Owner will engage an independent testing and inspecting agency to perform field inspections and tests and to prepare test reports.

1. Testing agency will conduct and interpret tests and state in each report whether tested Work complies with or deviates from requirements.

B. Correct deficiencies in or remove and replace structural steel that inspections and test reports indicate do not comply with specified requirements.

C. Additional testing, at Contractor's expense, will be performed to determine compliance of corrected Work with specified requirements.

D. Field-bolted connections will be tested and inspected according to RCSC's "Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."

E. Field-bolted connections will be tested and inspected according to RCSC's "Load and Resistance Factor Design Specification for Structural Joints Using ASTM A 325 or A 490 Bolts."

1. Direct-tension indicator gaps will be verified to comply with ASTM F 959, Table 2.

F. In addition to visual inspection, field-welded connections will be inspected and tested according to AWS D1.1 and the inspection procedures listed below, at testing agency's option.

1. Liquid Penetrant Inspection: ASTM E 165.
2. Magnetic Particle Inspection: ASTM E 709; performed on root pass and on finished weld. Cracks or zones of incomplete fusion or penetration will not be accepted.
3. Radiographic Inspection: ASTM E 94 and ASTM E 142; minimum quality level "2-2T."

G. In addition to visual inspection, field-welded shear connectors will be inspected and tested according to requirements of AWS D1.1 for stud welding and as follows:

1. Bend tests will be performed when visual inspections reveal either less than a continuous 360-degree flash or welding repairs to any shear connector.
2. Tests will be conducted on additional shear connectors when weld fracture occurs on shear connectors already tested, according to requirements of AWS D1.1.

3.7 CLEANING
A. Touchup Painting: Immediately after erection, clean field welds, bolted connections, and abraded areas of shop paint. Apply paint to exposed areas using same material as used for shop painting.

1. Apply by brush or spray to provide a minimum dry film thickness of 1.5 mils (0.038 mm).

B. Touchup Painting: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on structural steel are included in Division 9 Section "Painting."

C. Galvanized Surfaces: Clean field welds, bolted connections, and abraded areas and apply galvanizing repair paint according to ASTM A 780.

END OF SECTION 05120
PART 1 - GENERAL

1.1 DESCRIPTION:

This section specifies material and services required for installation of steel decking as shown and specified.

1.2 RELATED WORK:

A. Materials testing and inspection during construction: Section 01410, TESTING LABORATORY SERVICES.
B. Finish Painting: Section 09900, PAINTING.

1.3 DESIGN REQUIREMENTS:

A. Design steel decking in accordance with AISI publication, "Specification for the Design of Cold-formed Steel Structural Members" except as otherwise shown or specified.
B. Design all elements with the latest published version of applicable codes.

1.4 SUBMITTALS:

A. Submit in accordance with Section 01340, SAMPLES AND SHOP DRAWINGS.
B. Shop Drawings: Shop and erection drawings showing decking unit layout, connections to supporting members, and similar information necessary for completing installation as shown and specified, including supplementary framing, sump pans, ridge and valley plates, cant strips, cut openings, special jointing or other accessories. Show welding, side lap, closure, deck reinforcing and closure reinforcing details. Show openings required for work of other trades, including openings not shown on structural drawings. Indicate where temporary shoring is required to satisfy design criteria.
C. Manufacturer's Literature and Data: Showing steel decking section properties and specifying structural characteristics.
D. Certification: For each type and gauge of metal deck supporting concrete slab or fill, furnish certification of the specified fire ratings. Certify that the units supplied are U.L. listed as a “Steel Floor and Form Unit”.
E. Insurance Certification: Assist the Owner in preparation and submittal of roof installation acceptance certification as may be necessary in connection with fire and extended coverage insurance.

1.5 QUALITY ASSURANCE:

A. Underwriters’ Label: Provide metal floor deck units listed in Underwriters’ Laboratories “Fire Resistance Directory”, with each deck unit bearing the UL label and marking for specific system detailed.

B. FM Listing: Provide metal roof deck units which have been evaluated by Factory Mutual Global and are listed in “Factory Mutual Research Approval Guide” for “Class 1” fire rated construction.

1.6 APPLICABLE PUBLICATIONS:

A. Publications listed below form a part of this specification to extent referenced. Publications are referenced in text by basic designation only. Refer to the latest edition of all referenced Standards and codes.

B. American Society for Testing and Materials (ASTM):
 A36/A36M Standard Specification for Carbon Structural Steel
 A611.................................. Standard Specification for Structural Steel (SS), Sheet, Carbon, Cold-Rolled
 A653/A653M....................... Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Alloy-Coated (Galvanized) by the Hot-Dip Process
 C423 Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method

C. American Institute of Steel Construction (AISC):
D. American Iron and Steel Institute (AISI):
 1. Specification and Commentary for the Design of Cold-Formed Steel Structural Members

E. American Welding Society (AWS):
 D1.3 .. Structural Welding Code - Sheet Steel

F. Factory Mutual (FM Global):
 1. Loss Prevention Data Sheet 1-28: Wind Loads to Roof Systems and Roof Deck Securement

G. Military Specifications (Mil. Spec.)
 MIL-P-21035B Paint, High Zinc Dust Content, Galvanizing Repair

PART 2 - PRODUCTS

2.1 MATERIALS:
A. Steel Decking: ASTM A653, Structural Quality .
B. Galvanizing: ASTM A653, G90.
C. Galvanizing Repair Paint: Mil. Spec. MIL-P-21035B.
D. Primer for Shop Painted Sheets: Manufacturer's standard primer (2 coats). When finish painting of steel decking is specified in Section 09900 PAINTING, primer coating shall be compatible with specified finish painting.
E. Miscellaneous Steel Shapes: ASTM A36.
F. Welding Electrode: E60XX minimum.
G. Sheet Metal Accessories: ASTM A653, galvanized, unless noted otherwise. Provide accessories of every kind required to complete the installation of metal decking in the system shown. Finish sheet metal items to match deck including, but not limited to, the following items:
 1. Metal Cover Plates: For end-abutting deck units, to close gaps at changes in deck direction, columns, walls and openings. Same quality as deck units but not less than 1.3 mm (18 gauge) sheet steel.
 2. Continuous Sheet Metal Edging: At openings, concrete slab edges and roof deck edges. Same quality as deck units but not less than 1.3 mm (18 gauge) steel. Side and end closures supporting concrete and their attachment to supporting steel shall be designed by the manufacturer to safely support the wet weight of concrete and
construction loads. The deflection of cantilever closures shall be limited to 3 mm (1/8 inch) maximum.

3. Metal Closure Strips: For openings between decking and other construction, of not less than 1.3 mm (18 gauge) sheet steel of the same quality as the deck units. Form to the configuration required to provide tight-fitting closures at open ends of flutes and sides of decking.

4. Ridge and Valley Plates: Provide 1.3 mm (18 gauge), minimum 100 mm (4 inch) wide ridge and valley plates where roof slope exceeds 40 mm per meter (1/2 inch per foot).

5. Cant Strips: Provide bent metal 45 degree leg cant strips where indicated on the Drawings. Fabricate cant strips from 1 mm (20 gauge) metal with a minimum 125 mm (5 inch) face width.

6. Seat Angles for Deck: Provide where a beam does not frame into a column.

7. Sump Pans for Roof Drains: Fabricated from single piece of minimum 1.9 mm (14 gauge) galvanized sheet steel with level bottoms and sloping sides to direct water flow to drain, unless otherwise shown. Provide sump pans of adequate size to receive roof drains and with bearing flanges not less than 75 mm (3 inches) wide. Recess pans not less than 38 mm (1 1/2 inches) below roof deck surface, unless otherwise shown or required by deck configuration. Holes for drains will be cut in the field.

8. Acoustic Sound Barrier Closures: Manufacturer’s standard mineral fiber closures.

2.2 REQUIREMENTS:
A. Provide steel decking of the type, depth, gauge, and section properties as shown.

B. Metal Roof Deck: Single pan fluted units with flat horizontal top surfaces utilized to act as a permanent support for all superimposed loads. Comply with the depth and minimum gage requirements as shown on the Contract Documents.

1. Wide Rib (Type B) deck.
2. Intermediate Rib (Type F) deck.
3. Narrow Rib (Type A) deck.
4. Deep Rib (Type N) deck.
C. Do not use steel deck for hanging supports for any type or kind of building components including suspended ceilings, electrical light fixtures, plumbing, heating, or air conditioning pipes or ducts or electrical conduits.
D. Steel decking units used for interstitial levels shall include an integral system.
 1. System to provide a simple point of attachment for light duty hanger devices.
 2. System to allow for flexibility for attaching hangers for support of suspended ceilings, electrical, plumbing, heating, or air conditioning items, weight not to exceed 50 kg/m² (10 psf).
 3. System shall provide for a minimum spacing pattern of 300 mm (12 inches) on centers longitudinally and 600 mm (24 inches) on centers transversely.
 4. Maximum load suspended from any hanger is 23 kg (50 pounds).
 5. System consisting of fold-down type hanger tabs or lip hanger is acceptable.

PART 3 – EXECUTION

3.1 ERECTION:
A. Do not start installation of metal decking until corresponding steel framework has been plumbed, aligned and completed and until temporary shoring, where required, has been installed. Remove any oil, dirt, paint, water and rust from steel surfaces to which metal decking will be welded.
B. Coordinate and cooperate with structural steel erector in locating decking bundles to prevent overloading of structural members.
D. Provide steel decking in sufficient lengths to extend over 3 or more spans, except for interstitial levels.
E. Place steel decking units at right angles to supporting members. End laps of sheets of roof deck shall be a minimum of 150 mm (6 inches) and shall occur over supports.
F. Fastening Deck Units:
 1. Fasten roof deck units to steel supporting members by not less than 16 mm (5/8 inch) diameter puddle welds or elongated welds of equal strength, spaced not more
than 305 mm (12 inches) o.c. at every support, and at closer spacing where required for lateral force resistance by diaphragm action. Attach split or partial panels to the structure in every valley. In addition, secure deck to each supporting member in ribs where side laps occur. Power driven fasteners may be used in lieu of welding for roof deck if strength equivalent to the welding specified above is provided. Submit test data and design calculations verifying equivalent design strength.

2. Mechanically fasten side laps of adjacent roof deck units with spans greater than 1524 mm (3 feet) between supports, at intervals not exceeding 300 mm (1 foot) o.c., or midspan, whichever is closer, using self-tapping No. 8 or larger machine screws.

3. Provide any additional fastening necessary to comply with the requirements of Underwriters Laboratories and/or Factory Mutual to achieve the required ratings.

4. Uplift Loading: Install and anchor roof deck units to resist gross uplift loading (factored) of 120 psf at eave overhang and 75 psf for other roof areas.

5. Weld end laps of corrugated form deck units in valley of side lap and at middle of sheet (maximum spacing of welds is 380 mm (15 inches)).

6. Weld corrugated deck to intermediate supports in an X pattern. Weld in valley of side laps on every other support and in the valley of the center corrugation on the remaining supports (maximum spacing of welds is 760 mm (30 inches)).

G. Cutting and Fitting:

1. Cut all metal deck units to proper length in the shop prior to shipping.

2. Field cutting by the metal deck erector is restricted to bevel cuts, notching to fit around columns and similar items, and cutting openings that are located and dimensioned on the Structural Drawings.

3. Other penetrations shown on the approved metal deck shop drawings but not shown on the Structural Drawings are to be located, cut and reinforced by the trade requiring the opening.

4. Make all cuts neat and trim using a metal saw, drill or punchout device; cutting with torches is expressly prohibited.

5. Do not make any cuts in the metal deck that are not shown on the approved metal deck drawings. If an additional opening not shown on the approved shop drawings is required, submit a sketch, to scale, locating the required new opening and any other openings and supports in the immediate area. Do not cut the opening until the sketch has been reviewed and accepted by the Engineer. Provide any additional reinforcing or framing required for the opening at no cost to the Owner. Failure to
comply with these requirements is cause for rejection of the work and removal and replacement of the affected metal deck.

6. Reinforcement at Openings: Provide additional metal reinforcement and closure pieces as required for strength, continuity of decking, and support of other work shown.

3.2 WELDING:

Welds shall be made only by welders and welding operators who have been previously qualified by tests as prescribed in AWS D1.3.

3.3 FIELD REPAIR:

1. Areas scarred during erection.

2. Welds to be thoroughly cleaned and touched-up. // Touch-up paint for zinc-coated units shall be zinc rich galvanizing repair paint. // Touch-up paint for shop painted units of same type used for shop painting. //

- - - E N D - - -